OPTIMALITY CONDITIONS AND DUALITY IN NONDIFFERENTIABLE ROBUST OPTIMIZATION PROBLEMS
نویسندگان
چکیده
منابع مشابه
Optimization problems in statistical learning: Duality and optimality conditions
Regularization methods are techniques for learning functions from given data. We consider regularization problems the objective function of which consisting of a cost function and a regularization term with the aim of selecting a prediction function f with a finite representation f(·) = ∑n i=1 cik(·, Xi) which minimizes the error of prediction. Here the role of the regularizer is to avoid overf...
متن کاملDuality and Optimality Conditions for Infinite Dimensional Optimization Problems
Using a nonsymmetric duality for abstract continuous convex control problems opti-mality conditions are derived for calculating the primal and dual solutions in the case of linear on state depending dual operators. Functional and pointwise conditions are considered. Subject: 49K22, 49K27, 49N15, 90C42. Keywords: abstract optimal control , nonsymmetric duality, suucient conditions of optimality,...
متن کاملOptimality Conditions and Second-Order Duality for Nondifferentiable Multiobjective Continuous Programming Problems
Fritz John and Karush-Kuhn-Tucker type optimality conditions for a nondifferentiable multiobjective variational problem are derived. As an application of Karush-Kuhn-Tucker type optimality conditions, Mond-weir type second-order nondifferentiable multiobjective dual variational problems is constructed. Various duality results for the pair of Mond-Weir type second-order dual variational problems...
متن کاملOptimality Conditions and Duality in Nondifferentiable Minimax Fractional Programming with Generalized Convexity1
We establish sufficient optimality conditions for a class of nondifferentiable minimax fractional programming problems involving (F, α, ρ, d)convexity. Subsequently, we apply the optimality conditions to formulate two types of dual problems and prove appropriate duality theorems.
متن کاملDuality and optimality conditions in stochastic optimization and mathematical finance
This article studies convex duality in stochastic optimization over finite discrete-time. The first part of the paper gives general conditions that yield explicit expressions for the dual objective in many applications in operations research and mathematical finance. The second part derives optimality conditions by combining general saddle-point conditions from convex duality with the dual repr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: East Asian mathematical journal
سال: 2015
ISSN: 1226-6973
DOI: 10.7858/eamj.2015.029